《圆的周长》数学教案

时间:2024-06-21 16:05:15
《圆的周长》数学教案

《圆的周长》数学教案

作为一位无私奉献的人民教师,总不可避免地需要编写教案,借助教案可以有效提升自己的教学能力。我们应该怎么写教案呢?以下是小编整理的《圆的周长》数学教案,欢迎阅读,希望大家能够喜欢。

《圆的周长》数学教案1

教材分析

(可以从以下几个方面进行阐述,不必面面俱到)

l 课标中对本节内容的要求;本节内容的知识体系;本节内容在教材中的地位,前后教材内容的逻辑关系。

l 本节核心内容的功能和价值(为什么学本节内容),不仅要思考其他内容对本节内容学习的帮助,本节内容的学习对学科体系的建立、其他学科内容学习的帮助;还应该思考通过本节内容的学习,对学生学科能力甚至综合素质的帮助,以及思维方式的变化影响等。

教材从生活情境入手,通过让学生思考自行车绕圆形花坛骑一圈大约有多少米,引出圆的周长的概念。接着让学生思考:如何求一个圆的周长,引导学生用不同的方法进行测量。在此基础上,让学生通过测量几组圆的直径和周长,自主发现周长和直径的比值是一个固定值,从而引出圆周率的概念,并总结出圆的周长计算公式。

在本节内容中,教学的重点是让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程理解并掌握圆的周长计算方法。

在本教学设计中,对教材内容呈现形式上做了略微的改动。本设计从周长引入本课教学,这样可以加深圆的周长和其他以学图形周长在计算的联系和区别。用直的线围成的图形的周长求周长是几条直的线段长之和,而圆这个曲线围成的图形的计算方法是化曲为直。

学情分析

(可以从以下几个方面进行阐述,但不需要格式化,不必面面俱到)

教师主观分析、师生访谈、学生作业或试题分析反馈、问卷调查等是比较有效的学习者分析的测量手段。

l 学生认知发展分析:主要分析学生现在的认知基础(包括知识基础和能力基础),要形成本节内容应该要走的认知发展线,即从学生现有的认知基础,经过哪几个环节,最终形成本节课要达到的知识。

l 学生认知障碍点:学生形成本节课知识时最主要的障碍点,可能是知识基础不足、旧的概念或者能力方法不够、思维方式变化等。

在三年级上册学习了周长的一般概念以及长方形、正方形周长计算的基础上进一步学习圆的周长计算。

教学目标

(教学目标的确定应注意按照新课程的三维目标体系进行分析)

1、让学生知道圆的周长和圆周率的含义,掌握圆周率的近似值。理解掌握圆周长的计算公式,并能应用公式解决简单的实际问题。

2、通过对圆周长的测量和计算公式的探讨,培养学生观察、分析、比较、综合和主动研究、探索解决问题的方法的能力。

3、通过探索对学生进行辩证唯物主义的教育,结合我国古代数学家祖冲之的故事,对学生进行爱国主义教育。

教学重点和难点

教学重点:正确计算圆的周长

教学难点:理解圆周率的意义,推倒圆周长的计算公式。

教学流程示意

(按课时设计教学流程,教学流程应能清晰准确的表述本节课的教学环节,以及教学环节的核心活动内容。因此既要避免只有简单的环节,而没有环节实施的具体内容;还要避免把环节细化,一般来说,一节课的主要环节最好控制在4~6个之间,这样比较有利于教学环节的实施。)

一、创设情境,认识周长

二、小组合作,探究求圆周长的方法

三、运用知识,解决问题

四、课堂总结

五、布置作业

六、教学反思

教学过程(教学过程的表述不必详细到将教师、学生的所有对话、活动逐字记录,但是应该把主要环节的实施过程很清楚地再现。)

《圆的周长》数学教案2

教学内容:教材第62-64页圆的周长。

教学目标:

1、通过自主实践探索,理解圆的周长和圆周率的意义,掌握圆的周长计算公式,并能根据公式正确地进行计算。

2、经历观察、试验、猜想、证明等数学活动过程,培养学生初步的演绎推理能力,形成解决问题的一些基本策略。体会“由曲变直”的转化思想。

3、了解我国古代数学家对圆周率七窍的史实,进行爱国主义教育。

教学重难点:引导学生探究圆的周长与直径、半径的倍数关系和圆周率的含义。

教具学具准备:直尺、直径分别为5、6、7、8、9、10厘米的圆纸片、绳子、表格。

教学设计:

创设情境,揭示课题

创设情境,认识圆的周长。

师:李奶奶决定让小明和小刚进行一次跑步比赛。方案是这样的:让小明沿着一个边长为d米的正方形跑道跑,让小刚沿着一个直径为d米的圆形跑道跑(假设他俩跑的速度一样);方案一公布,小明就说不公平,同学们,你认为这个方案公平吗?要想判断这个方案是否公平,必须要知道他们所经过的路程是否相等,就必须要算出各自跑道的什么?(周长)

师:对,要知道他们所经过的路程是否相等,就必须要算出各自跑道的周长,这节课我们就一起来探讨圆的周长的知识。(板书课题:圆的周长)

设计意图:创设生动的教学情境,故事的引入给下面将要学习的内容做了一个情境铺垫,激发了学生的学习兴趣和学习热情,自然而然地引出新知。

引导探究,展开新课

1.情境导入,借助教具直观感知,认识圆的周长。

(1)出示教材62页情境图,想一想,要想计算分别需要多长的铁皮,实际上是求什么?(圆的周长)

(2)你知道圆的周长指的是什么吗?

让学生拿出课前准备好的圆片,指出哪一部分是圆的周长?

(3)围成圆周长的是一条什么线?

明确圆的周长的概念:围成圆的封闭曲线的长叫做圆的周长。

2.测量圆的周长。

(1)滚动法。

拿出一元硬币,提问:用什么办法才能知道一个圆的周长呢?(鼓励学生各抒己见,引导学生从多角度考虑)学生把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。

滚动法:把圆放在直尺上滚动一周,直接量出圆的周长。教师强调:用滚动法进行测量时,要注意以下三点:①要做好标记;②不能滑动,要滚动;③要滚动一周,不能多,也不能少。

小结:对于较短的圆形物体的周长,我们可以用滚动法测出圆的周长。

(2)绕绳法。

课件出示:一个圆形水池,提问:要测量这个水池的周长用滚动法可以吗?那你们想出了什么好办法呢?(学生提出可以用绕绳法测量)

绕绳法:用一根绳子绕圆形水池一周,剪去多余的部分,再拉直量出绳子的长度,即可得出圆形水池的周长。提醒学生用绕绳法测量时,要注意以下两点:①一定要将绳子拉直再测量 ……此处隐藏20891个字……。因为是自己操作的所得,再加上我在课中介绍了一些相关资料及讲述了一个有趣的小故事,所以学生对的含义就理解得特别透彻,也学得有兴趣。

《圆的周长》数学教案13

教学目标

1.使学生认识圆的周长,初步理解圆周率的意义。

2.通过对圆周率值的探求,培养学生科学的和实事求是的探索精神,及概括能力和逻辑思维能力。

3.通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育、增强民族自豪感。

教学重点和难点

推导圆周长的计算公式。理解圆周率的意义。

教学过程设计

(一)复习准备

上节课我们认识了圆,现在大家都说说,你们都知道关于圆的哪些知识?

(二)学习新课

我们这节课就来研究圆的周长。(板书:圆的周长)

我想问问同学,你们都带了哪些圆形实物?

两人互相指指圆的周长在哪儿?

谁愿意到前面来指一指老师手里这个圆的周长。

谁跟他指得不一佯?为什么这样指不行?

老师这有一面镜子,我要给这面镜子镶一条不锈钢边框,怎么才能知道这个边框长多少厘米呢?

老师这还有一个杯子,用它喝水有时烫手,我想编一个杯子套,怎么才能知道套口应该编多大?

哪个小组愿意帮助解决这个问题?我们每个组都带了一些圆形实物,我们要通过小组合作测出圆的周长,并填写实验报告。

请你在实验报告上填出你测量的实物名称,周长是多少,直径是多少。

(学生分小组测量手中圆形实物,并填写在实验报告上。能测量多少数据就测量多少数据。)

请小组代表汇报本组的实验过程和实验结果。

同学们想了那么多种方法,看来你们真了不起。我们归纳起来,同学们都是用缠绕、滚动的方法把曲线变直的。(板书:绕、滚)

(师出示黑板上画的圆)谁能用这两种方法来测量这个圆的周长。

看来光靠绕、滚这种实践的方法来测量圆的周长是不行的,我们必须研究一种求圆周长的方法。

想一想,以前我们学过哪些几何图形的周长?

长方形的周长和谁有关系?有什么关系?

正方形的周长和谁有关系?有什么关系?

圆的周长和谁有关系呢?举个例子说明,是不是这样呢?请看屏幕。

(用电脑演示三个滚动的圆,看出圆越大滚动的轨迹越长,圆越小滚动的轨迹越短。)

我们得出了圆的周长和直径有关系。

(板书:圆的周长 直径)

这是我们大家一起发现的。科学家往往发现问题就要去研究,我们同学长大想不想当科学家?今天我们就先学着科学家来研究一个问题:用我们测量的数据,通过计算分析,来研究圆的周长到底和直径有什么关系?你发现了什么规律?

(学生分小组讨论。)

通过同学们实验研究,我们得出圆的周长总是直径的3倍多一些。(板书:3倍多一些)

是不是这样呢?我们来验证一下。

(电脑演示:圆的周长是直径的3倍多一些。)

这是一个固定的倍数关系,我们叫它圆周率。(板书:圆周率)

谁能说说圆周率是怎么得来的?

请同学们看书上是怎么说的?

早在20xx年前,我国古代数学经典《周髀算经》就指出:圆经一而周三,(用投影打出这句话。)当时,是很了不起的成就,至今人们常用它来估算圆的周长。刚才,老师就是用这种方法来估算同学们算得是否准确的。谁知道世界上最早将圆周率准确到7位小数的是谁?(学生口答)他是我国伟大的数学家和天文学家祖冲之。

(出现祖冲之的画像,同时放配乐录音,介绍祖冲之。)

约1500年前,我国伟大的数学家和天文学家祖冲之就已精密地计算出圆周率的值在3.1415926和3.1415927之间,他是世界上第一个把圆周率的值精确到7位小数的人,比欧洲的数学家要早1000年左右。现在世界上最大的环形山,就是以祖冲之的名字命名的。

我们确实应该为前人的聪明、智慧感到自豪和骄傲。后来瑞士的数学家欧拉用希腊字母代表圆周率。(板书:)

圆周率是一个无限不循环小数。在计算时,如果用这个无限不循环小数参加计算是不方便的,故通常将取两位小数。(板书:3.14)

既然是个固定的值了,只要知道什么就能求圆的周长?(直径。)

现在我们能不能计算黑板上这个圆的周长?

什么条件不知道?(直径。)

谁来测直径,用分米作单位。(板书:分米)

如果直径是2分米,半径就是几分米?

用半径能不能求圆周长?

现在我们试着用直径或半径来求黑板上圆的周长。

谁用直径求出圆的周长?

(板书:3.142=6.28(分米))

为什么这样列式?

(板书:圆的周长=直径圆周率)

如果用C表示圆的周长,d表示直径,表示圆周率,字母公式怎么表示?

(板书:C=d)

谁能用半径求圆的周长?为什么这样做?

如果用字母r表示半径,字母公式怎么表示?

(板书:C=2r)

(三)巩固反馈

1.求出下面各圆的周长。(单位:厘米)

2.判断,你认为正确画,错误画。

(1)一个圆的周长总是它的直径的倍。( )

(2)圆的周长是6.28厘米,它的半径是2厘米。 ( )

(3)圆周长的一半与半个圆的周长相等。( )

3.选择:你认为哪个答案正确就举几号卡片。

(1)车轮滚动一周,所行路程是求车轮的[ ]

①半径

②直径

③周长

(2)圆形水池的直径是4米,绕池一周长 [ ]

①25.12米

②12.56米

③12.56平方米

(3)A圆的直径是6厘米,B圆的直径是2分米,圆周率 [ ]

①A圆大

②B圆大

③一样大

4.甲乙两人分别沿①、②两条路线从一端走到另一端,谁走的路线长?

(四)总结全课

这节课你学会了什么?(引导学生总结本课所学的知识。)

课堂教学设计说明

本节课通过引导学生对圆周率的探求,推导出圆周长的计算公式。第一步先通过测量实物中圆的周长,研究测量圆周长的方法是通过绕、滚的方法来测量。接着出现画在小黑板上的圆,当学生发现测这个圆的周长不能用绕、滚的方法来测量,必须研究一种求圆周长的方法。第二步,推导计算圆周长的公式。先带领学生回忆:我们以前学过哪些几何图形周长的计算?长方形和正方形的周长和谁有关系?引导学生发现圆周长和谁有关系。第三步,研究圆的周长和直径有什么关系,理解圆周率的意义,推导出圆周长的计算公式。通过对圆周率值的探求,培养学生科学的、实事求是的探索精神和概括能力及逻辑思维能力。

《《圆的周长》数学教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式