《气体的等温变化》优秀教案

时间:2024-07-04 09:21:13
《气体的等温变化》优秀教案

《气体的等温变化》优秀教案

作为一名老师,常常要根据教学需要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么优秀的教案是什么样的呢?以下是小编整理的《气体的等温变化》优秀教案,希望对大家有所帮助。

【教学目标】

知识目标:

1.理解自然数、分数的产生和发展的实际背景。

2.通过身边的例子体验自然数与分数的意义和在计数、测量、标号和排序等方面的应用。

能力目标:会运用自然数、分数(小数)的计算解决简单的实际问题,并从实际中体验由于需要而再次将数进行扩充的必要性。

情感目标:

1.通过同学之间的交流、讨论,以面对面互动的形式,完成合作交流,培养良好的与人合作的精神,感受集体的力量,体验成功的喜悦。

2.从具体的例子使学生感受数学来源于生活,生活离不开数学,从而增加学习数学的兴趣。

【教学重点、难点】

重点:自然数和分数的意义及运用自然数、分数的计算解决简单的实际问题。

难点:用自然数、分数(小数)的计算解决简单的实际问题。

【教学过程】

一、新课引入

小学里,我们学习了自然数和分数,这节课我们就来回顾一下这部分的内容:从自然数到分数。

二、新课过程

用多媒体展示杭州湾大桥效果图,并显示以下报道:世界上最长的跨海大桥——杭州湾大桥于20xx年6月8日奠基,这座设计日通车量为8万辆,全长36千米的6车道公路斜拉桥,是中国大陆的第一座跨海大桥,计划在5年后建成通车。

师问:你在这段报道中看到了哪些数?它们都属于哪一类数?

学生很快解决这两个问题之后,由上面这几个数,师生共同得出自然数的几个应用:

⑴属于计数如8万辆、5年后、6车道

⑵表示测量结果如全长36千米

⑶表示标号和排序如20xx年6月8日、第一座等

显示以下练习让学生口答

下列语句中用到的数,哪些属于计数?哪些表示测量结果?哪些属于标号和排序?

(1)20xx年全国共有高等学校20xx所。(标号和排序计数)

(2)小明哥哥乘1425次列车从北京到天津,然后乘15路公交车到了小明家。(标号和排序,标号和排序)

(3)香港特别行政区的中国银行大厦高368米,地上70层,至1993年为止是世界上第5高楼。(测量结果,计数,标号和排序,标号和排序)

做完练习之后师:随着生活和生产的需要,自然数已经不能满足实际需要了。如

(1)小华和她的7位朋友一起过生日,要平均分享一块生日蛋糕,每人可得多少蛋糕?(18)

(2)小明的身高是168厘米,如果改用米作单位,应怎样表示?(1.68米)

由于分配和测量等实际需要而产生了分数(如第(1)题)和小数(如第(2)题),它们是表示量的`两种不同方式,分数小数之间可以互相转化。分数可以化为小数,因为分数可以看作两个整数相除如35 =3÷5=0.6,13 =0.333…反过来小学里学过的小数都可以化为分数,如0.31=31100

三、典例分析

利用自然数、分数的运算可以解决一些实际问题

例1(多媒体展示)详见书本合作学习第1题

师:请同学们分小组进行讨论,帮助小惠合理地安排时间,在列算式之前,首先解决以下几个问题:

(1)从温州出发到21:40在杭州上火车,这一段时间包括哪几部分时间?

(2)市内的交通和检票进站要花30到40分钟,这两个数据在计算时用哪个数据?

(3)最迟的含义是什么?

由一学生回答,而后给出解题思路

用自然数列:400÷100=4(时)

21时40分—4时—40分=17时

用分数列:400÷100=4(时)

2123时—4时—23时=17时

由上题可以看到许多实际问题可以通过自然数和分数的运算得到解决。

例2(多媒体展示)详见书本合作学习第2题

师:请同学们思考我们要解决的问题涉及哪几个量?他们之间有怎样的数量关系?

生:有销售总额度,发行成本,社会福利资金,中奖者奖金

他们之间的关系:销售总额度=发行成本+社会福利资金+中奖者奖金

发行成本=15% ×销售总额度

(1)中奖者奖金总额:4000—15%×4000—1400=20xx(万元)

(2)以小组为单位进行探究活动,而后由一学生回答给出解题思路

思路1:在社会福利资金提高10%,发行成本保持不变,中奖者奖金总额减少6%的情形下:

销售总额度为:600+1400×(1+10%)+20xx×(1—6%)=4020≠4000,所以方案不可行。

思路2:在销售总额度不变的条件下,为使社会福利资金提高10%,发行成本保持不变

这时中奖者奖金总额变为:4000—1400×(1+10%)—600=1860(万元)

原来的奖金总额是20xx万元,减少了(20xx—1860)÷20xx=7%≠6%所以方案不可行。

思路3:销售总额度=发行成本+社会福利资金+中奖者奖金,在这个式子中,由于销售总额与发行成本保持不变,当提高的社会福利资金等于减少的中奖者奖金额时,这种方案可行,否则不可行。所以问题(2)可以用如下算式求解:20xx×6%=120(万元),1400×10%=140(万元)因为120≠140,所以方案不可行。

也可以用20xx×6%—1400×10%=120—140

算式中被减数小于减数,能否用已学过的自然数和分数来表示结果?看来数还需作进一步的扩展,这就是我们下节课要讲的内容,在很多实际生活中,还存在着许多自然数、分数还不能满足人们生活和生产实际的需要的例子,请举个例子?(气温零上温度与零下温度的表示,飞机上升5米与下降5米的表示等)

课内练习见书本1和2(注第2题首先让学生了解一米有多长,再估计)

四、探究学习

由于商场在搞活动,一件衣服的价格先上涨了10%,后又下降了10%,则此时这件衣服的价格比原价是贵了还是便宜了?

五、小结

可采用先让学生谈谈本节课所学,然后教师补充的形式。本节课主要讲了自然数、分数的意义及会用自然数、分数的计算解决简单的实际问题。

《《气体的等温变化》优秀教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式